Classifying and segmenting microscopy images with deep multiple instance learning

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classifying and segmenting microscopy images with deep multiple instance learning

MOTIVATION High-content screening (HCS) technologies have enabled large scale imaging experiments for studying cell biology and for drug screening. These systems produce hundreds of thousands of microscopy images per day and their utility depends on automated image analysis. Recently, deep learning approaches that learn feature representations directly from pixel intensity values have dominated...

متن کامل

Multiple instance learning for classifying students in learning management systems

In this paper, a new approach based on multiple instance learning is proposed to predict student’s performance and to improve the obtained results using a classical single instance learning. Multiple instance learning provides a more suitable and optimized representation that is adapted to available information of each student and course eliminating the missing values that make difficult to fin...

متن کامل

Attention-based Deep Multiple Instance Learning

Multiple instance learning (MIL) is a variation of supervised learning where a single class label is assigned to a bag of instances. In this paper, we state the MIL problem as learning the Bernoulli distribution of the bag label where the bag label probability is fully parameterized by neural networks. Furthermore, we propose a neural network-based permutation-invariant aggregation operator tha...

متن کامل

Retrieving and Classifying Affective Images via Deep Metric Learning

Affective image understanding has been extensively studied in the last decade since more and more users express emotion via visual contents. While current algorithms based on convolutional neural networks aim to distinguish emotional categories in a discrete label space, the task is inherently ambiguous. This is mainly because emotional labels with the same polarity (i.e., positive or negative)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bioinformatics

سال: 2016

ISSN: 1367-4803,1460-2059

DOI: 10.1093/bioinformatics/btw252